Документ поликанию Тейр Ство НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФИО: ПАНОВ Ю ФЕДерайньное государственное бюджетное образовательное учреждение высшего Должность: Регуло образования "Российский государственный геологоразведочный университет имени дата подписания: 18.09.2024 11:43:00 Серго Орджоникидзе"

Уникальный программный ключ:

e30ba4f0895d1683ed43800960e77389e6cbff62

(МГРИ)

Сопротивление материалов

рабочая программа дисциплины (модуля)

Закреплена за кафедрой Механики и инженерной графики

Учебный план s210504 23 GM23.plx

Специальность 21.05.04 ГОРНОЕ ДЕЛО

Квалификация Горный инженер (специалист)

Форма обучения очная

73ET Общая трудоемкость

Часов по учебному плану 252

в том числе: 93,6 аудиторные занятия самостоятельная работа 131,4

часов на контроль 27

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	4 (2.2)		5 (3.1)		Итого	
Недель	1	6	17	3/6		
Вид занятий	УП	РΠ	УП	РΠ	УП	РΠ
Лекции	14	14	16	16	30	30
Практические	28	28	32	32	60	60
Иные виды контактной работы	0,25	0,25	3,35	3,35	3,6	3,6
В том числе инт.	2	2	2	2	4	4
Итого ауд.	42,25	42,25	51,35	51,35	93,6	93,6
Контактная работа	42,25	42,25	51,35	51,35	93,6	93,6
Сам. работа	65,75	65,75	65,65	65,65	131,4	131,4
Часы на контроль			27	27	27	27
Итого	108	108	144	144	252	252

Москва 2023

Виды контроля в семестрах:

экзамены 5 зачеты 4

курсовые работы 5

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1 Цель: Дать общее представление о методах расчета на прочность, жесткость и устойчивость элементов конструкций. Сопромат расширяет общетехнический уровень студента и подготавливает его для изучения специализированных профильных дисциплин

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ						
П	(икл (раздел) ОП:						
2.1	Требования к предвари	тельной подготовке обучающегося:					
2.1.1	Физика						
2.1.2	Начертательная геометрия и инженерная графика						
2.1.3	3 Математика						
2.1.4	Теоретическая механика						
2.2	Дисциплины (модули)	и практики, для которых освоение данной дисциплины (модуля) необходимо как					
	предшествующее:						

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ОПК-5: Способен применять методы анализа, знания закономерностей поведения, управления свойствами горных пород и состоянием массива в процессах добычи и переработки полезных ископаемых, а также при строительстве и эксплуатации подземных объектов

	enstyaragin nogocindia oobektob
Знать:	
Уметь:	
Владеть:	

	УК-1: Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий
Знать:	
Уметь:	
Владет	b:

В результате освоения дисциплины (модуля) обучающийся должен

3.1	Знать:
3.1.1	Теорию поведения материала при различных видах нагружений в рамках изучаемой программы.
3.2	Уметь:
3.2.1	Составлять расчетные схемы элементов реальных объектов, используемых в широком диапазоне занятости, и
	производить решение конкретных задач.
3.3	Владеть:
3.3.1	Навыками теоретических исследований и основами компьютерных технологий для решения конкретных задач.

	4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)							
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литература	Инте ракт.	Примечание	
	Раздел 1. Основные понятия							
1.1	Основные свойства упругих тел. Цели и задачи курса, приняты допущения. /Лек/	4	2	ОПК-5	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0		
1.2	Внутренние силы, метод сечений, определение основных видов нагружения тел. /Пр/	4	4	ОПК-5	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0		
1.3	Общее понятие о напряжениях и деформации. /CP/	4	13	ОПК-5	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0		
	Раздел 2. Осевое растяжение и сжатия							

2.1	Осевое растяжение и сжатие. Геометрия деформации. Напряжение в поперечных и наклонных сечениях тела. /Лек/	4	3	ОПК-5	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
2.2	Механические испытания материалов. Виды диаграмм растяжения и сжатия для упруго-пластичных, малопластичных и хрупких материалов. Основные механические характеристики материалов. Схематизация диаграмм растяжение — сжатие. Выбор допустимых напряжений. /Пр/	4	6	ОПК-5	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
2.3	Расчеты на прочность и жесткость. Статически неопределимые системы, влияние температуры и начальных зазоров на прочность конструкции. Расчет стержневых систем по предельным нагрузкам. /СР/	4	13	ОПК-5	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
2.4	/ИВКР/	4	0,25	ОПК-5	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
	Раздел 3. Сдвиг и кручение						
3.1	Чистый сдвиг, модуль сдвига. Кручение стержней с круглой формой поперечного сечения. Геометрия деформации, напряжение в сечениях стержня. Угол закручивания и жесткость стержня. /Лек/	4	3	ОПК-5	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
3.2	Эпюра крутящих моментов, напряжений и углов закручивания. /Пр/	4	6	ОПК-5	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
3.3	Расчет стержней на прочность и жесткость. /CP/	4	13	ОПК-5	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
	Раздел 4. Геометрические						
4.1	характеристики плоских сечений	4	3		П1 1 П1 2	0	
4.1	Понятие о статических моментах площади сечения, осевых, центробежном и полярном моментах инерции. Изменение моментов инерции при параллельном переносе координатных осей. /Лек/	4	3		Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
4.2	Осевые моменты инерции сечений простой геометрической формы. /Пр/	4	6		Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	2	
4.3	Изменение моментов инерции при повороте координатных осей. Главные оси и главные моменты инерции. Понятие об эллипсе инерции. /СР/	4	13		Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
	Раздел 5. Прямой поперечный изгиб				H1 1 H1 2		
5.1	Внутренние силы в сечениях стержня, построение эпюр внутренних сил. /Лек/	4	3		Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	

5.2	Дифференциальные и интегральные зависимости между интенсивностью распределенной нагрузки, поперечной силой и изгибающим моментом. Напряжение при чистом изгибе, расчет стержней на прочность. /Пр/	4	6	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
5.3	Напряжение в сечениях стержней при прямом поперечном изгибе, рациональные формы поперечных сечений. Деформация при изгибе. Дифференциальное уравнение упругой линии балки. Оценка жесткости балок. Универсальное уравнение упругой линии балки. /СР/	4	13,75	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
	Раздел 6. Косой изгиб. Внецентренное растяжение и сжатие. Итоговое занятие					
6.1	Косой изгиб (изгиб в двух плоскостях), положение нейтральной оси. Характер распределения напряжений по сечению, направление прогиба. /Лек/	5	2	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
6.2	Расчет стержней на прочность и жесткость. Изгиб с растяжением и сжатием. Условие прочности. Внецентренное растяжение и сжатие, положение нейтральной оси. Распределение напряжений по сечению стержня. /Пр/	5	7	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
6.3	Расчет на прочность. Понятие о ядре сечения. /CP/	5	10	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
	Раздел 7. Энергетические методы определения перемещений точек тела					
7.1	Потенциальная энергия деформации при общем случае нагружения тела. /Лек/	5	3	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
7.2	Теорема Кастилиано, теоремы взаимности работ и перемещений. /Пр/	5	7	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
7.3	Интегралы Мора и правило Верещагина для определения линейных и угловых перемещений. /СР/	5	12	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
	Раздел 8. Анализ напряженного и деформированного состояния материала в точке					
8.1	Общий метод определения напряженного состояния. Главные площадки и главные напряжения. Круговые диаграммы Мора. /Лек/	5	3	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
8.2	Обобщенный закон Гука. Удельная энергия деформации, энергия изменения объема и формы тела. /Пр/	5	7	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
8.3	Предельное состояние материала в точке. Гипотезы прочности, эквивалентные напряжения. Расчет на прочность валов при сочетании изгиба с кручением. /СР/	5	12	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	

	Раздел 9. Расчет статически неопределимых систем					
9.1	Понятие о стержневых системах и их краткая классификация. /Лек/	5	5	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
9.2	Степень статической неопределимости системы. Теорема о минимуме потенциальной энергии. Расчет систем методом сил. /Пр/	5	5	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	2	
9.3	Канонические уравнения метода сил, определение коэффициентов канонических уравнений, использование свойств симметрии. /СР/	5	10,65	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
9.4	/ИВКР/	5	3,35		0	
	Раздел 10. Устойчивость упругих систем					
10.1	Понятие об устойчивости упругих систем, основные виды потери устойчивости. Бифуркационные системы, критическая сила. /Лек/	5	3	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
10.2	Расчет систем методом Эйлера. Влияние способов закрепления стержня на величину критической силы. /Пр/	5	6	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	
10.3	Универсальный метод расчета систем на устойчивость. Понятие о приближенных методах оценки устойчивости. /СР/	5	21	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2	0	

5. ОЦЕНОЧНЫЕ СРЕДСТВА

5.1. Контрольные вопросы и задания

Вопросы к экзамену.

- 1. Упругое тело и его свойства: прочность, жесткость и пластичность. Внешние и внутренние силы. Метод сечений. Напряжение. Компоненты внутренних сил. Виды простых деформаций.
- 2. Деформация и перемещение. Принцип начальных размеров. Виды простых деформаций. Допущения, принимаемые в сопротивление материалов.
- 3. Силы внешние и внутренние, внутренние силовые факторов сечении при произвольном нагружении тела.
- 4. Геометрия деформации растяжения.
- 5. Внутренние силы напряжения, действующие в поперечном сечении бруса при растяжении.
- 6. Закон Гука при растяжении. Диаграмма растяжения. Пределы пропорциональности упругости, текучести и прочности.
- 7. Допустимое напряжение, коэффициент запаса прочности. Расчет на прочность при растяжении и сжатии. Площадь сечения нетто и брутто.
- 8. Расчет при растяжении с учетом собственного веса бруса.
- 9. Температурные и монтажные напряжения. Статически неопределимые задачи при растяжении и сжатии.
- 10. Напряжения в наклонных сечениях при растяжении.
- 11. Напряженное состояние материала в точке. Главные площадки и главные напряжения. Виды напряженных состояний в точке. Линейное напряженное состояние.
- 12. Определение величины и направления: главных напряжений при двух¬осном напряженном состоянии. Круговые диаграммы Мора.
- 13. Графический метод определения напряжений в наклонных площадках при плоском напряженном состоянии.
- 14. Двухосное напряженное состояние. Круговые диаграммы Мора.
- 15. Двухосное напряженное состояние. Определение величины и направ ления главных напряжений.
- 16. Деформация при сложном напряженном состоянии. Обобщенный закон Гука. Изменение объема. Объемный закон Гука.
- 17. Статический момент площади сечения.
- 18. Потенциальная энергия деформации и ее определение при всех прос⁻тых деформациях и в общем виде.
- 19. Моменты инерции площади сечения. Формулы моментов инерции простейших форм сечений: параллелограмма, прямоугольника, треугольника, круга и кольца
- 20. Теорема Штейнера. Изменение момента инерции при повороте осей.
- 21. Главные оси и главные моменты инерции.
- 22. Эллипс инерции. Случай, когда эллипс инерции обращается в круг инерции.
- 23. Чистый сдвиг. Деформация при чистом сдвиге. Закон Гука. Зависи¬мость между тремя постоянными для

изотропного тела.

- 24. Кручение бруса с круглым поперечным сечением.
- 25. Внутренние силы и напряжения в поперечных сечениях круглого бруса при кручении. Эпюры крутящих моментов.
- 26. Напряженное состояние при кручении круглого стержня.
- 27. Прямой поперечный изгиб.
- 28. Внутренние силовые факторы, действующие в поперечном сечении балки при изгибе.
- 29. Дифференциальная зависимость между интенсивностью нагрузки поперечной силой и изгибающим моментом.
- 30. Эпюры поперечной силы и изгибающего момента.
- 31. Напряжение в поперечном сечении балки при чистом изгибе.
- 32. Интегральная зависимость между интенсивностью нагрузки, поперечной силой и изгибающим моментом.
- 33. Напряжения в поперечном сечении балки при прямом изгибе. Формула Д.Н.Журавского.
- Подбор сечений балок при изгибе. Рациональные формы поперечных сечений балок.
- 35. Деформация при изгибе. Дифференциальное уравнение изогнутой оси.
- 36. Интегрирование дифференциального уравнения изогнутой оси.
- 37. Теорема Кастильяно.
- 38. Интеграл Мора.
- 39. Правило Верещагина
- 40. Изменение моментов инерции при повороте осей.
- 41. Начало наименьшей работы.

Вопросы к зачету

- 1. Статически неопределимые стержневые системы (фермы и рамы).
- 2. Внешние и внутренние лишние связи.
- 3. Степень статической неопределимости.
- 4. Канонические уравнения метода сил.
- 5. Теория предельных состояний материалов.
- 6. Факторы, влияющие на предельное состояние материала.
- 7. Коэффициент запаса.
- 8. Основные гипотезы прочности. 3-я и 4 теория прочности. Теория Мора.
- 9. Прочность деталей при циклическом изменении нагрузок.
- 10. Виды циклов. Расчет на усталостную прочность.
- 11. Местные напряжения. Влияние качества обработки поверхности деталей на длительную прочность.
- 12. Устойчивость упругих систем. Основные формы потери устойчивости.
- 13. Задача Эйлера. Влияние способов закрепления стержня на величин; критической силы.
- 14. Пределы применимости формулы Эйлера. Расчет на устойчивость по методу Ясинского.
- 15. Универсальный метод расчета систем на устойчивость.
- 16. Динамическое действие нагрузок.
- 17. Напряжения при равноускоренном движении тела.
- 18. Напряжения при равномерном вращении тела.
- 19. Напряжения при колебаниях.
- 20. Собственные колебания системы.
- 21. Вынужденные колебания системы с учетом сил сопротивления.
- 22. Напряжение при ударе.

5.2. Темы письменных работ

Предусмотрен курсовой проект.

«Расчет статически неопределимой пространственной рамы»

5.3. Оценочные средства

Рабочая программа дисциплины "Сопротивление материалов" обеспечена оценочными средствами для проведения текущего контроля и промежуточной аттестации, включающими контрольные вопросы для проведения промежуточной аттестации, критерии оценивания учебной деятельности обучающихся по балльно-рейтинговой системе, примеры заданий для практических и лабораторных занятий, билеты для проведения промежуточной аттестации.

Все оценочные средства представлены в Приложении 1.

5.4. Перечень видов оценочных средств

Оценочные средства разработаны для всех видов учебной деятельности студента — лекций, лабораторных и практических занятий, самостоятельной работы и промежуточной аттестации по решению задач и графических работ. Оценочные средства представлены в виде:

Средств текущего контроля - проверочных работ по решению тематических задач.

Средств итогового контроля – промежуточной аттестации: зачет в 3 семестре, экзамен в 4 семестре.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) 6.1. Рекомендуемая литература 6.1.1. Основная литература Авторы, составители Заглавие Издательство, год

	Авторы, составители	Заглавие	Издательство, год
Л1.1	Степин П. А.	Сопротивление материалов: учебник	Санкт-Петербург: Лань, 2014
Л1.2	Павлов П. А., Паршин Л. К., Мельников Б. Е., Шерстнев В. А.	Сопротивление материалов: учебник	Санкт-Петербург: Лань, 2017
Л1.3	Куликов Ю. А.	Сопротивление материалов. Курс лекций: учебное пособие	Санкт-Петербург: Лань, 2017
Л1.4	Сидорин С. Г.	Сопротивление материалов. Пособие для решения контрольных работ студентов-заочников: учебное пособие	Санкт-Петербург: Лань, 2018
	•	6.1.2. Дополнительная литература	
	Авторы, составители	Заглавие	Издательство, год
Л2.1	Арсентьев Ю. А., Булгаков Е. С.	Прикладная механика. В 3 ч. Ч.3: Теория механизмов и машин: учебное пособие	М.: Щит-М, 2007
Л2.2	Арсентьев Ю. А., Булгаков Е. С., Сердюк Н. И.	Сборник задач по прикладной механике: Сопротивление материалов	М.: РГГРУ, 2008

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)							
Аудитория	Назначение	Оснащение	Вид				
7	Учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	54 П.М., Доска, мел. Многоярусные столы и скамьи (амфитеатр)	Лек				
4-01	Аудитория для лекционных, практических и семинарных занятий.	Набор учебной мебели на 42 посадочных места, преподавательский стол- 1 шт., компьютерный стол- 1 шт., стул преподавательский – 2 шт., доска меловая – 1 шт., экран для проектора- 1 шт., проектор- 1 шт., ПК- 1 шт.	Пр				

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Методические указания по изучению дисциплины «Сопротивление материалов» представлены в Приложении 2 и включают в себя:

- 1. Методические указания для обучающихся по организации учебной деятельности.
- 2. Методические указания по организации самостоятельной работы обучающихся.
- 3. Методические указания по организации процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.