«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГЕОЛОГОРАЗВЕДОЧНЫЙ УНИВЕРСИТЕТ им. СЕРГО ОРДЖОНИКИДЗЕ (МГРИ)»

На правах рукописи

duche

ВОСИХОВ ШОХРУХ ТУЙЧИЕВИЧ

ЗАКОНОМЕРНОСТИ ЛОКАЛИЗАЦИИ МЕСТОРОЖДЕНИЯ БИРЮЗАКАН И ОБОСНОВАНИЕ ЮВЕЛИРНЫХ КАЧЕСТВ БИРЮЗЫ

Специальность: 1.6.10 – Геология, поиски и разведка твёрдых полезных ископаемых, минерагения

АВТОРЕФЕРАТ

Диссертации на соискание ученой степени кандидата геолого-минералогических наук

Работа выполнена в ФГБОУ ВО «Российский государственный геологоразведочный университет имени Серго Орджоникидзе» (МГРИ).

Научный руководитель: Литвиненко Андрей Кимович –

доктор геолого-минералогических наук, профессор кафедры минералогии, геммологии и петрографии, (МГРИ)

Официальные оппоненты: Кисин Александр Юрьевич – доктор

геолого-минералогических наук, ведущий научный сотрудник ФГБУН Институт геологии и геохимии им. акад. А.Н.

Заварицкого, УрО РАН

Гафуров Фарход Гиясович – доктор

геолого-минералогических наук, заведующий лабораторией геодинамики фанерозоя и петрогенезиса Институт геологии, сейсмостойкого строительства и

сейсмологии НАНТ, г. Душанбе

Федеральное государственное автономное

образовательное учреждение высшего

образования «Российский Университет

Дружбы Народов» (РУДН)

Ведущая организация:

Защита диссертация состоится «23» октября «2025» года в 14:00 часов на заседании диссертационного совета Д 212.121.04 при ФГБОУ ВО «Российский государственный геологоразведочный университет имени Серго Орджоникидзе» (МГРИ) по адресу: 117997, г. Москва, ул. Миклухо-Маклая, д.23, зал диссертационных советов (кабинет 4-73).

С диссертацией можно ознакомиться в Научной библиотеке и на сайте Российского государственного геологоразведочного университета имени Серго Орджоникидзе (МГРИ) по адресу: 117997, г. Москва, ул. Миклухо-Маклая, д. 23, http://mgri.ru/

Автореферат разослан «____» ____ 2025 г.

Ученый секретарь Диссертационного совета 24.2.364.02 fllent

А.А. Иванов

ВВЕДЕНИЕ

Актуальность. Месторождение бирюзы Бирюзакан имеет длительную историю освоения, приблизительно с раннего средневековья. Бирюза этого месторождения по своим качественным кондициям является самой лучшей на территории бывшего СССР [Киевленко, 2000]. Оно расположено на площади около 0,5 км², отработано на глубину до 50 метров и состоит из трёх участков. С 60-х годов прошлого века приблизительно 20 лет оно разведывалось экспедицией Средазкварцсамоцветы входившей в состав объединения Союзкварцсамоцветы. В результате разведочных работ производственники отрицательно оценили 1-й и 2-й участки, третий – положительно. После завершения геолого-разведочных было работ месторождение передано на баланс экспедиции Памиркварцсамоцветы. В связи с тем, что оно административно находится на территории Таджикской Республики, к которой была приписана последняя экспедиция. Памиркварцсамоцветы не успела провести поисково-ревизионные работы в связи с прекращением функционирования головного объединения. перспективы бирюзовой минерализации третьего находящиеся в 0,6 км восточнее от него 4 проявлений вырисовывается бирюзоносная полоса длиной 3,3 км. Проведенными диссертантом исследования Бирюзакана и его флангов по первичным ореолам рассеяния установлена геохимическая аномалия REE, Th, U, As, Sb, Zn, Bi, W, Mo, Cu, Cd, Se, Ba, Ag, Au с кларками концентрации до нескольких десятков раз выше кларков. Возможное объединение будущих поисково-оценочных работ на бирюзу и перечисленные металлы может вывести изучаемую территории в разряд перспективных на новые виды рудной минерализации и выявить новые бирюзоносные тела с высокосортным самоцветом. Её положение в центре крупного горнорудного района Карамазар, с которым нами установлена парагенетическая связь бирюзы, подчёркивает актуальность рассматриваемой темы.

Цель работы. Выявить геолого-генетические закономерности локализации месторождения бирюзы Бирюзакан и установить факторы, определяющие её ювелирные качества на основе комплексного анализа условий образования, минерального состава и структурно-текстурных особенностей.

Задачи исследования:

- **р** проанализировать геологическое строение месторождения Бирюзакан по литературным данным и нашим полевым исследованиям.
- **>** исследовать минеральный и химический состав вмещающих бирюзу вулканогенных пород.
- **>** выявить структурно-вещественные особенности бирюзового агрегата и установить признаки, определяющие её качественные кондиции.
- рознализировать перспективы перевода мономинерального самоцветного месторождения в многокомпонентное и определить наличие или отсутствие парагенетических связей с рудными месторождениями Карамазарского рудного района.

Фактический материал. Собраны и проанализированы фондовые и опубликованные материалы по месторождению Бирюзакан и рудному району Карамазар. Составлена карта размещения бирюзовых месторождений и проявлений Северного Таджикистана на основе тектонической карты, построен геологический разрез Карамзарского рудного района и геологический план месторождения Бирюзакан. Полевые работы проводились в течение 1,3 месяцев в 2023-2024 годах: были проведены рекогносцировочные маршруты на поверхности месторождения, его флангах и в подземных горных выработках с отбором 160 штуфных проб на минералогические, петрографические и геохимические анализы. Из каменного материала было изготовлено 38 протолочек, было более 150 прозрачных шлифов проведено микрорентгеноспектральных, 108 рентгенофазовых, рентгенофлюоресцентных определений и 5 ИК-спектрометрических анализов.

Методы исследований включали: картографический, минералогический, петрографический, а также-рентгенофазовый, выполненный на приборах ДРОН-3М (аналитики С.Махмадшариф МГРИ-РГГУ им. Серго Орджоникидзе и М.А. Мираков Институт геологии, сейсмостойкого строительства и сейсмологии НАН Душанбе), рентгеноспектральный микроанализ на сканирующем электронном микроскопе Tescan VEGA 3sbu c энергодисперсионным спектрометром (ЭДС) Oxford Instruments X-act при ускоряющее напряжение 20 кВ, ток пучка 20 нА (аналитик М.А. Рассомахин), рентгенофлюоресцентный, выполненный на спектрометре AXIOS Advanced, с рентгеновской трубкой, оснащенной Rh анодом, мощностью 3 kW и Philips PW-2400 определение широкого спектра петрогенных и рудных элементов с чувствительностью до 10-4% (аналитик А.И. Якушев, ИГЕМ РАН), фурье-спектрометре ФСМ 2201 (аналитик А.О. Карпов).

Научная новизна. 1) На площади месторождения Бирюзакан автором обнаружены новые для исследуемого объекта минералы: халькосидерит, аргентоярозит, ганнингит, ванадинит, магнетит и гидроксилбастнезит-(Nd), а гиббсит, крандаллит, планерит. 2) Установлены две генерации халькопирита: первая – до бирюзовая, вторая – после бирюзовая. 3) В бирюзовых жилах установлена колломорфная текстура самоцвета, которая указывает на её кристаллизацию из коллоидных растворов на самой поздней стадии эндогенного цикла развития месторождения. В шлифах бирюза представлена бесцветным криптозернистым агрегатом. 4) Текстура бирюзы определяет качество: для высокосортной характерна массивная, для низкосортной – колломорфная. 5) На месторождении установлена геохимическая аномалия REE, Th, U, As, Sb, Zn, Bi, W, Mo, Cu, Cd, Se, Ba, Ag, Au. Это выводит район в разряд перспективных площадей для постановки поисково-оценочных работ. 6) Составлена карта размещения бирюзовых месторождений и проявлений Северного Таджикистана и рудных месторождений на тектонической основе; построен геологический разрез и металлогенограмма Карамзарского рудного района и геологический план месторождения Бирюзакан.

Практическое значение. 1) На основе текстурных особенностей бирюзы: массивной или колломорфной, предложена оценка качественных кондиций самоцвета. 2) Установленный голубой гиббсит и другие минералы голубого цвета могут ошибочно приниматься за бирюзу при поисковых работах и представлять минерал-обманку, что требует дополнительную экспресс-диагностику при оценке бирюзы. 3) Установлены парагенетические связи Бирюзакана с рудными месторождениями Карамазара, что выдвигает бирюзу (минерал богатый Си и Zn) в ранг поисковых признаков на рудные элементы. 4) Геохимическая аномалия REE, Th, U, As, Sb, Zn, Bi, W, Mo, Cu, Cd, Se, Ba, Ag, Au на площади Бирюзакана ставит вопрос о перспективах бирюзоносного района на рудные полезные ископаемые.

Защищаемые положения.

- 1) Вид текстуры определяет качественные кондиции бирюзы как драгоценного камня. В бирюзе колломорфной текстуры содержатся концентрические слои роста и секториальное строение. Пространство между сферолитами может быть заполнено другими минералами, в том числе тёмной окраски, что ухудшает ювелирные качества. В бирюзе массивной текстуры эти особенности отсутствуют, структура криптозернистая однородная. Именно эти признаки определяют самое высокое ювелирное качество.
- 2) Впервые установлено, что в парагенезисе с бирюзой находятся голубой гиббсит (минерал-обманка), который вместе с голубыми самплеитом, халькосидеритом и галлуазитом, могут усложнять диагностику и качественную оценку бирюзы, и вводить в заблуждение горняков и потребителей камнесамоцветной продукции.
- 3) На основе общей геолого-структурной позиции месторождения Бирюзакан с рудными месторождениями Тариэкан (Ag), Адрасман (Au), Каптархана (Ag) и др. намечается парагенетическая связь бирюзовой минерализации с рудными месторождениями Карамазара. Подтверждающим аргументом парагенетической связи месторождений является обнаружение диссертантом гидрооксилбастнезита-Nd и геохимической аномалии REE, Th, U, As, Sb, Zn, Cu, W, Bi, Cd, Se, Ag, Au элементов характерных для рудных месторождений Карамазара.

Апробация работы публикации. Результаты исследований И докладывалось на международной конференции «XVI Новые идеи в науках о Земле МГРИ-РГГУ» (Москва, 2023); XI Международной конференции молодых ученых «Молодые – наукам о Земле» (Москва, 2024); III Международной промышленности «Развитие национальной Таджикистана за годы независимости страны Горно-металлургический институт Таджикистана» (Бустон, 2024); XVII Международной конференции «Новые идеи в науках о Земле МГРИ-РГГУ» (Москва, 2025); XIV Международной конференции «Геология, прогноз, поиски и оценка месторождений алмазов, благородных и цветных металлов ЦНИГРИ» (Москва, 2025).

Основные положения диссертации изложены в 8 печатных работах, включая 3 статьи в журналах, рекомендованных перечнем ВАК РФ.

Благодарности. Автор выражает признательность научному руководителю д.г.-м.н, профессору А.К. Литвиненко; сотрудникам кафедры минералогии, геммологии и петрографии: зав. кафедрой к.г.-м.н. Д.А. Петроченкову, к.г.-м.н. В.А. Утенкову, инженеру М. Саймудасири; сотрудникам кафедры месторождений полезных ископаемых: зав. кафедрой д.г.-м.н. П.А. Игнатову, д.г.-м.н. А.А. Верчебе, к.г.-м.н. С.А. Малютину, к.г.-м.н. А.П. Алёшину, сотруднику ФГБУН Южно-Уральского центра минералогии и геоэкологии УрО РАН М.А. Рассомахину, сотруднику Мин. музея им. А.Е. Ферсмана А.О. Карпову; сотрудникам Горно-металлургического института РТ ст. преподавателю А.О. Отаеву, к.б.н. А.А. Олимову, к.т.н. Ш.Дж. Мирбобоеву, ст. преподавателю Н.К. Усмонову.

СОДЕРЖАНИЕ РАБОТЫ И ЗАЩИЩАЕМЫЕ ПОЛОЖЕНИЯ

Диссертационное исследование включает введение, 7 глав, заключение и список литературы. Общий объём работы составляет 116 страниц, включая 59 рисунков, 9 таблиц, списка литературы из 77 источников.

Во введении обоснованы актуальность темы, проанализирована степень научной разработанности проблемы, сформулированы цель и задачи, раскрыты научная новизна и практическая значимость, приведены данные об апробации работы. Первая глава посвящена физико-географической характеристике Карамазара, истории изучения района работы и Бирюзакана. Во второй главе на основе материалов предшественников и диссертанта освещаются геологическое строение и полезные ископаемые района. В третьей – раскрываются структурно-вещественные особенности вмещающих бирюзу пород по нашим данным. B четвёртой — анализируются структурно-текстурные особенности бирюзы как критерия качества самоцвета. В пятой – исследуются минералы-обманки бирюзы – гиббсит, самплеит, халькосидерит и галлуазит. В *шестой* – характеризуются минералы и геохимические особенности. В седьмой рассматриваются условия формирования месторождения, в заключении суммированы основные научные выводы исследования.

1. Вид текстуры определяет качественные кондиции бирюзы как драгоценного камня. В бирюзе колломорфной текстуры содержатся концентрические слои роста и секториальное строение. Пространство между сферолитами может быть заполнено другими минералами, в том числе тёмной окраски, что ухудшает ювелирные качества. В бирюзе массивной текстуры эти особенности отсутствуют, структура криптозернистая однородная. Именно эти признаки определяют самое высокое ювелирное качество.

Бирюза месторождения Бирюзакан по своим качественным кондициям является лучшей, а месторождение Бирюзакан одним из лучших среди бывших республик СССР (Менчинская, 1981; Киевленко. 2000). Она может быть сравнима с бирюзой Ирана, которая считается самой высококачественной. Для высокосортной бирюзы характерна однородная голубая окраска и массивная текстура. Зернистость её агрегата визуально не просматривается в силу микрокристаллической до криптозернистой структуры (Рис. 1 а).

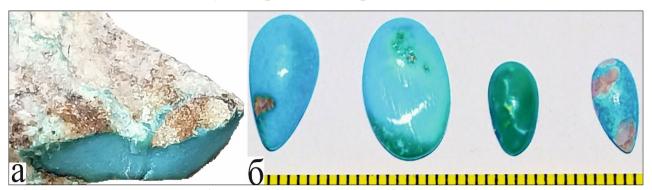

Часто внутри жильного агрегата бирюзы наблюдаются кристаллы кварца, а также реликты вмещающей породы (Рис. 1 б). Такие образования встречаются на месторождении наиболее часто.

Рис. 1. а – Жила бирюзы ~ 20 см. музей Самоцветы; б – Бирюза с кварцем, 8×5 см, музей МГРИ-РГГРУ

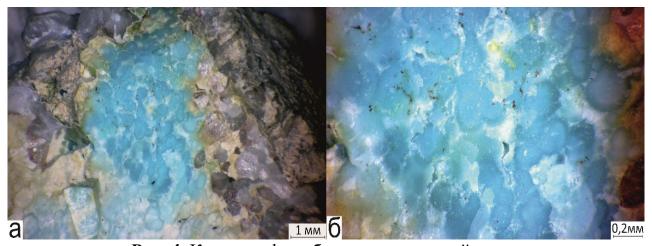
Нами в 2023 году на участке 3 обнаружена жила с однородной бирюзой высшего сорта, несмотря на тщательность проведенных ранее разведочных работ (Рис. 2 а). Её мощность составила 0,4 мм, протяжённость 20 см. Из неё была изготовлена серия кабошонов массой 2.08, 1.86, 0.76 и 0.68 карат, подтвердившая хорошее ювелирное качество изучаемого самоцвета (Рис. 2 б), n = 1.61–1.62, плотность = 2.74–2.75г/см³. Они близки параметрам бирюзы, приводимым в справочниках [Штрюбель, Циммер, 1987; Лазаренко, 1971].

Бирюза в составе бирюзовых и кварц-бирюзовых жил характеризуется двумя видами текстур: массивной, однородной (Рис. 1, Рис. 2) и колломорфной, неоднородной (Рис. 3, Рис. 4). Массивная бирюза является самой высококачественной в силу однородности строения и более высокой плотности.

Рис. 2. а – Фрагмент бирюзовой жилы с апофизой в центре, 0.5×4 см; б – Пробная серия кабошонов, линейка миллиметровая

Колломорфная бирюза отличается контрастными цветами, которые могут придавать кристаллосырью декоративность (Рис. 3), но её качество снижается. Подобные образования Т.И. Менчинская [1981; 1989] определяет как сетчатую или вкрапленную бирюзу и относит к более низким сортам.

Автором внутри жильного кварц-бирюзового агрегата была обнаружена сферолитовая, колломорфная текстура. Она характеризуются голубой


концентрической окраской разной интенсивности. Наиболее интенсивно окрашена в голубой цвет периферия сферолитов, которые имеют различный диаметр (Рис. 4 б). Хотя наблюдается и другая вариация (Рис. 3). Этот текстурный рисунок резко контрастирует с хорошо оформленными кристаллами прозрачного, хорошо образованного кварца (Рис. 5). Между ними на поверхности бирюзы наблюдаются индукционные поверхности.

Парагенезис кристаллов кварца и бирюзы позволяет рассматривать её генезис гидротермальным.

Интерстиции между сферолитами имеют разные размеры и сложены разными минералами рассмотренными ниже. Колломорфная бирюза обладает повышенной пористостью и более низкой плотностью. Она хуже полируется и относиться к более низкосортной. Особенностью бирюзы, наблюдаемой в шлифах, является отсутствие окраски, которая характерна для цветных минералов: лазурита, сапфира и др. (Рис. 5, Рис. 6).

Рис. 3. Колломорфная бирюза, 10 см по длиной оси, музей Самоцветы

Рис. 4. Колломорфная бирюза в кварцевой жиле: а – общий вид; б – её фрагмент. Между сферолитами – щелевидные полости

В исследуемой нами бирюзе отсутствовала люминисценция, характерная для бирюзы с месторождения Техут (Армения), которая в ультрафиолете светиться светло-канареечным цветом (Менчинская, 1981). В сферолитах в скрещенных николях, наблюдается концентрическая зональность и

секториальность — 4 конусовидных тёмных контура от тёмного центра (Рис. 5 б). Рядом находиться призматический, зональный контур кристалла кварца. Между ними индукционные поверхности, указывающие на одновременный рост. Размеры зёрен бирюзы оцениваются на уровне глинистых частиц (Рис. 7 а).

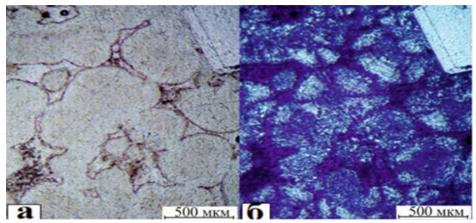


Рис. 5. Сферолиты бирюзы при одном (а) и в скрещенных николях (б)

Детали строения межзернового пространства, сложенного минералом светлого цвета, образующего веерообразные призматические кристаллики с маленькой полостью. В нём на фоне криптозернистой белой массы наблюдаются зёрна – тёмные точки (Рис. 6 а). Для микрокристаллов бирюзы характерна разная оптическая ориентировка, создающая муаровый эффект, интерференционную чёрно-белую картину (Рис. 6 б). Белый минерал интерстиций является бирюзой с более низким содержанием FeO 1.3% по сравнению с 1.9 для сферолитовой части. Эту бирюзу можно рассматривать как более позднюю генерацию. Сами сферолиты с концентрической зональностью также можно рассматривать как многостадийные образования (Рис. 5, Рис. 6).

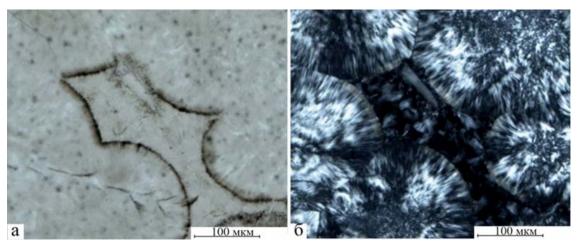
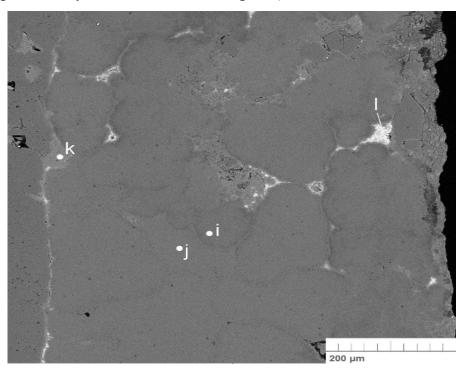



Рис. 6. Шлифы сферолитовой бирюзы.

а – при одном николе; б – муаровый, интерференционный рисунок, в скрещенных николях

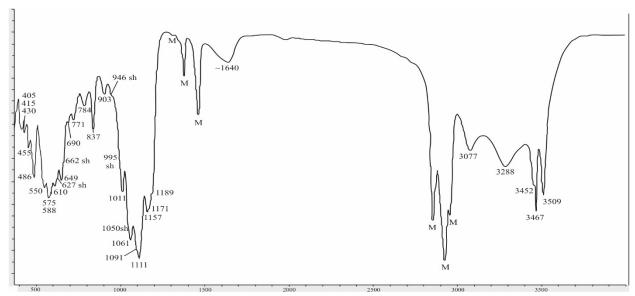
Кроме бирюзы в интерстициях отмечаются микроагрегаты халькосидерита и крандаллита (Рис. 7). Микрозондовые исследования показали широкую изоморфную вариацию в составе бирюзы железа от 0.58 до 1.88 и меди от 6.38 до 7.97 мас.% (Таблица 1). В составе бирюзы установлены СаО до 0.32 и SO₃ до

0.5 мас.%. Гидроксильная группа составляет от 9.5 до 15 мас. %. ИКспектрометрией она установлена достоверно (Рис. 8).

Рис. 7. Сферолиты бирюзы (i, j), в интерстициях которой крандалит (k) и халькосидерит (l). Фото в отражённых электронах (BSE)

Таблица 1 – Химические составы (1) и формульные единицы (2) бирюзы

	Окси-	Ато	Бирюза									
	ды	-МЫ	ярко		ярко		ярко		ярко		тёмно	
			голубая		голубая		голубая		голубая		голубая	
-	1	2	1	2	1	2	1	2	1	2	1	2
	Al ₂ O ₃	Al	41.19	5.81	41.73	5.87	39.49	6	39.7	6	40,2	6
	P_2O_5	P	38.77	3.93	39.10	3.95	37.09	4.04	36.31	3.94	37,35	3,99
	SO_3	S	0.5	0.04	0.28	0.02	ı	ı	ı			ı
	CaO	Ca	0.32	0.04	0.27	0.04	-	-	0.17	0.26	0,35	0,03
	FeO	Fe ⁺³	1.88	0.19	1.32	0.13	0.58	0.80	0.73	0.15	1,81	0,19
	CuO	Cu	6.38	0.58	7.73	0.70	7.97	0.8	7.81	0.76	7,97	0,82
	Сумм		89.04		90.44		85.13		84.72		87,68	
	a											


В пространстве между сферолитами бирюзы установлен также крандаллит, в сотые доли мм. Для него характерны высокие содержания кальция до 12.5, SO_3 до 12, F до 0.5 и OH до 13 мас.%.

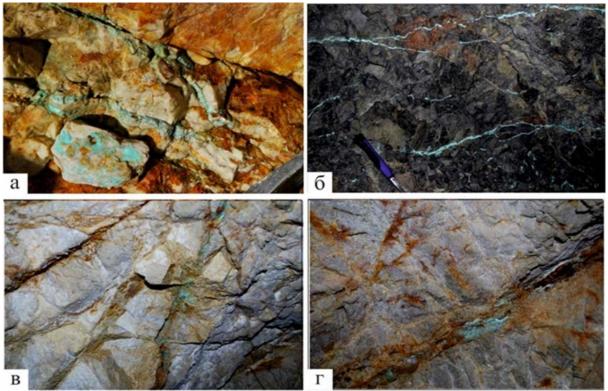
Полученные 4 ИК-спектра бирюзы (Рис. 8) идентичны и близки к спектрам бедной Fe^{3+} бирюзы (содержащей не более 7 мас. % Fe_2O_3) из месторождений

Армении, Египта, Ирана, Китая, Сенегала, США и Узбекистана, и местонахождений Уральско-Пайхойского региона.

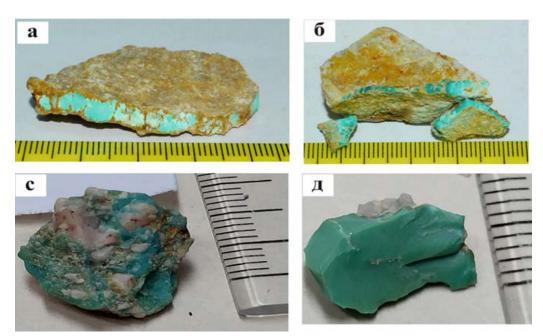
В жильном комплексе выделено несколько генераций кварца. Бирюза ассоциирует с его последней генерацией [Менчинская, 1981]. Автором наблюдалась бирюзовая жила секущая горизонтальную кварцевую (Рис. 9). Это позволяет определить, что бирюза сформировалась после кварца предпоследней генерации. Индукционные поверхности в бирюзовом агрегате с кристаллами кварца можно рассматривать как парагенезис бирюзы и кварца последней генерации.

Жилы бирюзы как в в кайнотипных (тёмных) (Рис. 10 б), так и палеотипных (светлых) вулканитах (Рис. 10 а,в,г). По данным геологов экспедиции "Средазсамоцветы" по «свежим» вулканитам бирюза не формируется. Это было подтверждено работами Т.И. Менчинской [1981;1989]. Наши многочисленные наблюдения в штольнях не подтверждают это мнение. Также отсутствует бирюзовая минерализация в вертикальных трещинах.

Рис. 8. ИК-спектр бирюзы, образец B-1. Sh – плечо, М – полоса вазелинового масла


Бирюзовые жилки в основном встречаются в пологих под углом 3-15°, слабо наклонных 21-35° и крутых 35-55° трещинах. Наблюдалось несколько направлений и два типа трещин. Азимут простирания бирюзовых жилок (Рис. 10) совпадают с направлением главной тектонической структуры — разломом Бирюзовым. Наши наблюдения подтверждают данные Т.И. Менчинской [1989] о пологих, почти горизонтальных бирюзоносных трещинах, характерных для всех месторождений бирюзы в СССР.

Таким образом, можно сказать, что один из поисковых признаков бирюзы на Бирюзакане является структурный. Он характеризуется субгоризонтальными трещинами отрыва с жильным выполнением.


Рис. 9. Рассечение бирюзовыми жилами кварцевых жил и трещин

Жилки бывают очень тонкими, как примазки (Рис. 10 г); встречаются прерывистыми, трассирующими (Рис. 10) или линзовидными, в которых встречается ярко голубая бирюза (Рис. 2 а). Бирюза сформировалась раньше гипергенных бурых охр глинистых минералов (Рис. 11 а,б), т.е. позже бирюзы минералообразующие процессы не закончились. В бирюзе наблюдаются зоны роста (Рис. 5) и растворения (Рис. 6). Нами отмечалось гипергенное изменение бирюзы: в жилах проявились следы растворения и образование каплевидных форм и рыхлость и сыпучесть.

Рис. 10. Жилы бирюзы в кайнотипных (тёмные) и палеотипных (светлое) вулканитах:

6 – жилы бирюзы в кайнотипных; a, B, Γ – палеотипных

Рис. 11. Бирюза разного цвета: а-б – из штольни №4, с-д – из карьера №3

Генезис. По мнению геологов-производственников [Отчёт ..., 1982] наиболее существенное влияние на распространение бирюзы оказывал Бирюзовый разлом, к оперяющим трещинам которого приурочена бирюза. В контуре разлома мощностью ~ 120м и в его лежачем боку бирюзу никогда не находили. Поэтому он выступает как структурный, а его породы, как геохимический барьеры для бирюзы.

Бирюзовые жилы расположены параллельно Бирюзовому разлому и не образуют вертикальных жильных тел. Вероятно, это связано с тем, что на данном гипсометрическом уровне подвижные истинные гидротермальные растворы переходили в коллоидные, более тяжёлые и менее мобильные. Это нашло отражение в колломорфных текстурах (Рис. 4). Горняки прекращали проходку восстающих штреков из-за отсутствия бирюзы.

Индукционные отпечатки граней кварца в бирюзе указывают на их одновременный рост. Бирюза ассоциирует с кварцем третьей генерации (Рис. 10 а). Поскольку кварц имеет гидротермальное происхождение, можно с уверенностью сказать, что бирюза – гидротермального генезиса.

Источник гидротермальных растворов мы видим в магматических ультракислых магматитах шайданского гранитоидного комплекса (T₁) – самыми поздними магматическими образованиями Карамазара (Рис. 18). Для рудных гидротермальных жил Большого Канимансура выдвинута аналогичная гипотеза [Файзиев, 2008; Файзиев, 2024]. Фацию серицитовых кварцитов можно коррелировать с аналогичным процессом на близлежащем месторождении Pb-Zn с Ag Большой Канимансур, а сольфатарная фация, установленная на нём [Файзиев, 2008], проявилась на Бирюзакане образованием сульфатов: крандаллита, аргентоярозита и ганнингита. Кроме того, сера входит в бирюзу и гиббсит. Начало и протекание серицит-хлоритового метасоматоза на Канимансуре происходило (по данным изучения газово-жидких включений) при

температуре 420-280°С и давлении 720-670 кбар [Файзиев, 2008]. С изменением андезитовых порфиритов на последних его стадиях связано образование бирюзы.

Замещение минералов и стекла вулканитов привело в подвижное состояние многие элементы, в том числе, составляющих бирюзу, А1 и Р. Третий её элемент Си, появился при окислении халькопирита. Две его генерации установлены нами [Литвиненко, Восихов, и др., 2024]. Бирюза находится в парагенезисе с кварцем последней генерации. На Бирюзакане выделено 4-е генерации кварца [Менчинская, 1989]. На Большом Канимансуре он отнесён к пятой минеральной ассоциации, включающей также флюорит, барит, урановую смолку, пирит, халькопирит, сфалерит, галенит и самородное серебро. Становление минералов этой стадии происходило при температуре 235-50°С и давлении 350-100 бар; в составе газово-жидких включений установлены F, HCO₃, C1, SO₄ [Файзиев, 2008]. В этих P-Т параметрах происходила, вероятно, кристаллизация бирюзы.

По данным [Менчинская, 1989] со ссылкой на неопубликованные данные Н.И. Андрусенко, в бирюзе были обнаружены единичные включения коллоидных растворов, что подтверждает наше предположение об их участии в кристаллизации бирюзы. В том же источнике указывается, что в пластинках бирюзы под увеличением (х200) установлены газово-жидкие включения размером 0.0006-0.0012 мм с наполнением 0.97-0,88%. При гомогенизации их в газовую фазу были получены два температурных интервала: 195-135° и 120-90°С, которые близки температурам гомогенизации включений в кварце — 170-90°С [Менчинская, 1989]. Таким образом, нужно подчеркнуть, что процесс образования бирюзы начался с автометаморфизма андезитовых порфиритов и других средних вулканитов. Результатом этого явились вторичные кварциты серицитовой фации и кварцевые жилы с относительно редкой бирюзой, кристаллизовавшейся на самых поздних стадиях при 350-100 бар и 235-50°С.

2. Впервые установлено, что в парагенезисе с бирюзой находится голубой гиббсит (минерал-обманка), который вместе с известным на месторождении голубым самплеитом, халькосидеритом и галлуазитом могут усложнить диагностику и качественную оценку кондиций бирюзы, и вводить в заблуждение как горняков, так и потребителей камнесамоцветной продукции.

Гиббсит обнаружен в жильном кварце с малахитом. Он образует небольшие жилки длиной до нескольких сантиметров и мощностью до 0,5 см, от светло-серого до голубого цвета (Рис. 12). Контакты между гиббситом разного цвета волнистые, резкие [Восихов и др., 2025]. Голубые жилки по цвету и жильной форме очень похожи на бирюзу (Рис. 12).

Поверхность гиббситовых агрегатов почковидная, приближающаяся к сферолитам. В их составе рентгенофазовым анализом обнаружены редкие, мелкие до $10~\mu m$ в поперечнике, округлые зёрна магнетита, с примесью, в мас.%: $3.5~\text{CuO}, 3.6~\text{MnO}, 4.8~\text{SiO}_2, 8.3~\text{Al}_2\text{O}_3.$

Рис. 12. Многоцветная жилка гиббсита в кварце, $1,8\times0,5$ см

Внутри гиббситых образований наблюдаются концентрически-зональные, натёчные агрегаты похожие на колломорфную текстуру рудных минералов. Жилы имеют псевдослоистую текстуру, обусловленную развитием тонких разноцветных полос. Наряду с колломорфными агрегатами отмечаются микрокристаллы гиббсита. Главные линии на рентгенограмме гиббсита представлены следующими значениями: 4.816 (100), 4.334 (40), 4.169 (10), 3.327 (15), 2.429 (15), 1.996 (10), 1.445 (10). Они близки к эталонным. Гиббсит с непостоянным химическим составом, в мас.%: SiO₂ от 0.6 до 12.4, CuO от 0.4 до 3.8, MnO от 0 до 5.5, FeO от 0 до 0.3, SO₃ от 0 до 1.2, F от 2.8 до 4.9. Максимальные содержания примесей в гиббсите [Минералы, 1967] не должны превышать 3 мас.%. В нашем они достигают более 17 мас.%. Примеси в составе гиббсита мы рассматриваем как изоморфные. Голубая окраска различных оттенков, вероятно, обусловлена высокими содержаниями меди, а её изменения от светлой до тёмноголубой, как вариации её колебаний.

В связи с высоким содержанием элементов-примесей варьирует также содержание главного вещества минерала — глинозёма от 51.6 до 63.7 мас.%. Его количество в «чистом» гиббсите [Минералы, 1967] составляет 65.4, а остальное количество 35.6 мас.%, соответственно, вода.


Положение гиббсита среди кварцевых жил с малахитом позволяет отнести его к гидротермальным минералам. Его образование можно коррелировать с гиббситом из золоторудного месторождения Бургунда, расположенного в 4.5 км северо-западнее Бирюзакана, в известняках (D₂-C₁). Его образование связывают с низкотемпературным гидротермальным процессом [Файзиев и др., 2018].

Гиббситовые жилы Бирюзакана и Бургунды позволяют отнести изменения в андезитовых порфиритах к алунитовой формации низкотемпературных гидротермальных образований по Е.К. Лазаренко [1971]. Источником глинозёма для гиббсита и бирюзы послужили средне-кислые вулканиты, в которых протекали процессы замещения полевых шпатов кварцем, с образованием вторичных кварцитов и пропилитов [Менчинская, 1981]. Высвободившийся при этом глинозём мигрировал в зоны пониженных давлений – трещины.

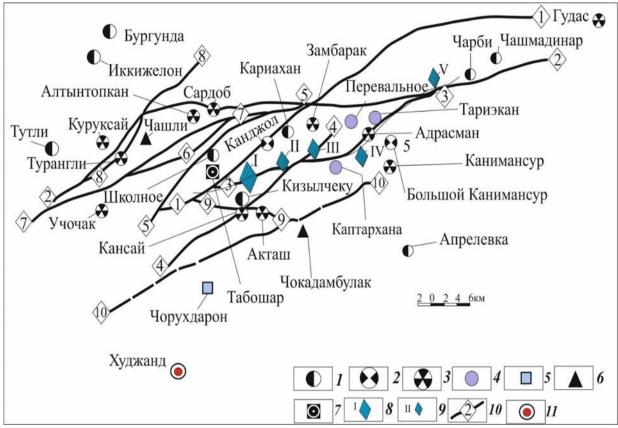
Ярко голубой гиббсит Бирюзакана, вероятно, встречался геологам, отрабатывавшим месторождение на бирюзу. При диагностике некоторых голубых образцов и вставок может оказаться её ошибочная диагностика, т.к. голубой гиббсит легко визуально можно спутать с высокосортной бирюзой. Наша находка гиббсита расширяет спектр минеральных ассоциаций и ставит задачу проверки добытой ранее бирюзы и изделий из неё.

При изучении коллекции бирюзы в музее Самоцветы и Мин. музее им. А.Е. Ферсмана в одной из витрин мы обнаружили экспонат голубого самплеита с месторождения Бирюзакан, очень похожего на бирюзу (Рис. 13 а,б). Его кристаллохимическая формула: NaCaCu₅(PO₄)₄Cl•5H₂O. Твёрдость — 4, близка бирюзе. В самплеите также угадывается колломорфная текстура. Публикаций о самлеите с Бирюзакана нам не известно. Очевидным является большое внешнее сходство этих минералов, что может привести к ошибкам при их диагностике, а значит и при оценке количественных и качественных кондиций Бирюзакана.

В жильном комплексе нами установлен халькосидерит – гидрофосфат Си и Fe — минерал из группы бирюзы, светло-зелёного цвета. Халькосидерит Бирюзакана содержит, в мас.%: $8.8 \text{ Al}_2\text{O}_3$, $31.2 \text{ P}_2\text{O}_5$, 34 FeO, 6.7 CuO, 1 SO3, 0.1 CaO, сумма = 82%. Его идеализированная кристаллохимическая формула имеет следующий вид: $\text{CuFe}_6(\text{PO}_4)_4(\text{OH})_2 \cdot 4\text{H}_2\text{O}$. В крупных скоплениях минерал нам не встречался. Как минерал-обманка он может рассматриваться при наличии крупных выделений, которые на месторождении вполне ожидаемы.

Рис. 13. Самплеит с Бирюзакана — двойник бирюзы а — размер образца 7×4 из музея Самоцветы; б — размер 10×5 см, Мин.музея им. А.Е. Ферсмана

Галлуазит — водосодержащий силикат алюминия Al₄[Si₄O₁₀] • 4H₂O. Т.И. Менчинской [1989] он был только упомянут в ассоциации с голубой бирюзой и кварцем без описания и химического анализа. Диссертантом этот минерал установлен в составе гиббситовых жил в форме неправильных зёрен до 150 микрометров. Форма зёрен галлуазита неопределённая, с сильно размытыми краями, но чётко отделяется от гиббсита. В них наблюдаются растворённые кристаллы магнетита, содержащего в мас.% до 3.4 Al₂O₃, 5.3 SiO₂, 0.6 MnO, 0.7CuO. В составе галлуазита много примесей. Содержание меди более 1 мас.%


может окрасить минерал в голубой цвет, что также будет создавать внешнее сходство с бирюзой. От неё галлуазит отличается более низкой твёрдостью.

3. На основе общей геолого-структурной позиции месторождения Бирюзакан с рудными месторождениями Тариэкан (Ag), Адрасман (Au), Каптархана (Ag) и др. намечается парагенетическая связь бирюзовой минерализации с рудными месторождениями Карамазара. Подтверждающим аргументом парагенетической связи месторождений является обнаружение диссертантом гидрооксилбастнезита-Nd и геохимической аномалии REE, Th, U, As, Sb, Zn, Cu, W, Bi, Cd, Se, Ag, Au – элементов характерных для рудных месторождений Карамазара.

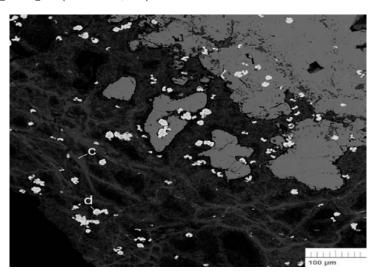
Важнейшее значение в образовании и размещении рудных месторождений Карамазара играли системы сближенных глубинных разломов субширотного и северо-западного простирания. По данным [Вольфсон и др., 1972] глубинные, долгоживущие разломы выполняли большую роль в геологической истории региона. Одним из них является разлом Бирюзовый, контролирующий размещение Ag-Pb-Zn и Cu-Bi месторождений, в том числе, бирюзовых объектов. Последние локализованы в центре сложной системы глубинных разломов северо-восточного простирания: Тарыэканского, Баштавакского, Кошмулинского, Кызылтурского и Бирюзового (Рис. 14) [Литвиненко, Восихов, 2024]. Эти разломы определяют блоковое строение Карамазара [Мещеркова, 1960].

Район является крупнейшим рудным регионом мирового значения. На его площади выделено 14 рудных полей [Бабаходжаев и др., 2001]. Они представлены крупными, средними и мелкими Рb-Zn (Альтынтопкан, Куруксай, Турангли, Сардоб, Учочак, Кансай, Акташ, Замбарак, Канимансур, Адрасман, Гудас и др.), Ад (Большой Канимансур, Канджол и др.), Fe-рудными (Чокадамбулак), Аи (Бургунда, Иккижелон, Тутли, Апрелевка, Кариахан, Школное, Кызылчеку, Чарби, Чашмадинар и др.), Сu-Bi (Каптархана, Перевальное, Тариэкан и др.), Bi-W (Чорухдарон) и U (Табошар и др.) месторождениями.

Месторождение Бирюзакан и 4-е бирюзовых проявлений (Бирюзасай, Карамазар, Кызылташ и Шорбулак) расположены в центре района. На западе бирюзоносная зона приближается к месторождениям Школьное (Ag-Au) и Табошар (U); на севере – к Канджолу (Ag-Pb-Zn), Кариахану (Au), Замбараку (Cu-Pb-Zn), Перевальному и Тариэкану (Cu-Bi-Pb-Zn); на востоке – к Большому Канимансуру (Ag-Pb-Zn), Канимансуру (Pb-Zn) и Адрасману (Cu-Bi-Pb-Zn); на юге – к Каптархане (Cu-Bi), Акташу, Кансаю (Pb-Zn) и Кызылчеку (Au). На более дальнем расстоянии от бирюзовой зоны, на западном фланге Карамазара расположены месторождения Сардоб, Алтынтопкан, Куруксай, Турангли, Учочак (Pb-Zn), Чашли (Fe), Бургунда, Иккижелон, Тутли (Au); на юге – Чокадамбулак (Fe), Чорухдайрон (W-Bi) и Апрелевка (Au); на востоке – Чарби, Чашмадинар (Au) и Гудас (Pb-Zn) (Puc. 14) [Литвиненко, Восихов, 2025].

Рис. 14. Карта размещения рудных месторождений и бирюзы Карамазара, составлена с использованием карты м-ба 1:200000 из отчёта В.Н. Байкова и др., 1968 г.:

1-7 – виды месторождений: 1 – Au, 2 – Ag, 3 – Pb-Zn, 4 – Cu-Bi, 5 – Bi-W, 6 – Fe, 7 – U, 8-9 – бирюза:I – Бирюзакан, 9 – проявления:II – Бирюзасай, III – Карамазар, IV – Кызылташ, V – Шорбулак, 10 – глубинные разломы и их номера: 1 – Тарыэканский, 2 – Баштавакский, 3 – Бирюзовый, 4 – Кошмулинский, 5 – Канджольский, 6 – Токмакский, 7 – Редкометальный, 8 – Алтынтопканский, 9 – Оккурдаванский, 10 – Кызылтурский, 11 – город.


Нами была установлена большая группа рудных и нерудных минералов с высоким содержанием изоморфных рудных элементов [Литвиненко, Восихов и др., 2025]. В жиле гиббсита с малахитом мощностью ~ 3 см, в обломке 6х6 мм обнаружена группа минералов более 70 микрозёрен, неправильной формы до 15 um, (Рис. 15). Это гидроксилбастнезит-(Nd): в мас. %: 29.3 Nd₂O₃, 8.7Gd₂O₃, 7.4 Sm₂O₃, 6.2 La₂O₃, 6.1 Y₂O₃, 5.1 Pr₂O₃, 3 Ce₂O₃, 2.3 Dy₂O₃, 3.2 CuO, 4.9 CaO, 3.6 F, сумма 75.7. Во флюорите Кансайского рудного поля установлены повышенные **REE** содержания 2008], коррелировать [Файзиев, которые онжом редкоземельной минерализацией Бирюзакана. Вероятно, это первая находка редкоземельной минерализации в Карамазаре.

В бирюзоносном кварце обнаружены кристаллики пирита до 10 мкм, которые с 1,48 Со и 0,85 Аѕ мас.%. Там же определены рутил до 20 мкм с примесью V_2O_5 1,83 мас.%, а также циркон. В зальбандах бирюзовых жил обнаружена мелкая вкрапленность халькопирита, которая не проникла внутрь бирюзы. Это позволяет предположить его более поздний, чем бирюза, характер кристаллизации. Более ранний халькопирит наблюдается совместно с пиритом в вулканитах. Это наблюдение позволяет выделить две генерации халькопирита:

первая в вулканитах, вторая – в жилах кварца и бирюзы. Ранее в зальбандах бирюзовых жил установлены сульфиды, более точно не диагностированные [Менчинская, 1989].

Внутри жил наблюдается плотный агрегат малахита 3х2,5х2 см. Минерал встречается на многих месторождениях Карамазара [Файзиев, 2024]. Его поверхность покрыта мелкими впадинами и коричневыми тонкими корочками более минералов. В малахите установлена вкрапленность поздних Эта находка гидротермальной редкоземельной гидроксилбастнезита-(Nd). минерализации расширяет область её распространения на Бирюзакане. В гиббсите – изоморфная примесь, в мас. %: CuO 2.7, MnO 0.4, SO₃ 1.2, F 4.5. В нём обнаружены мелкие до 10 µm, округлые зёрна магнетита с 3.5 CuO, 3.6 MnO, 4.8 SiO₂, 8.3 Al₂O₃ мас. %:. Возможно, магнетит при окислении являлся источником меди и алюминия для кристаллизации бирюзы. Там же установлены мелкие зёрна кальцита, содержащего по 1.5% Мп и Fe.

Трещинно-жильная система Бирюзакана изобилует бурыми скоплениями гидрооксидов и сульфатов железа и других рудных низкотемпературных минералов. Среди бирюзовых линз рентгенофазовым анализом определены (аналитик Саймудасири М.): фаустит $ZnAl_6(PO_4)_8 \cdot 4H_2O$, аргентоярозит $AgFe_3(SO_4)_2OH$, ганнингит $Zn(SO_4) \cdot H_2O$, ванадинит $Pb(VO_4)_3Cl$ и климанит $ZnAl_2(PO_4)_2(OH)_2 \cdot 3H_2O$ (Таблица 2).

Рис. 15. Участок образца в отражённых электронах (BSE): (d) – гидроксилбастнезит-(Nd), с – гиббсит и b –малахит

Таким образом, вырисовывается парагенетическая связь бирюзы с минералами Zn, Ag, Fe, Pb, V и REE.

Выявленная нами в составе кварцевых жил с бирюзой многочисленная И рудных минералов позволяет группа рудных элементов провести парагенетические связи территории бирюзовой минерализации с рудными Карамазара и включить кристаллизацию бирюзы объектами процесс Минеральный бирюзу рудогенеза. состав сопровождающих минералов,

содержащих Fe, Mn, Cu, Zn, V, Ag, REE, даёт основания выдвинуть Бирюзакан в ранг перспективного объекта для постановки поисково-оценочных работ.

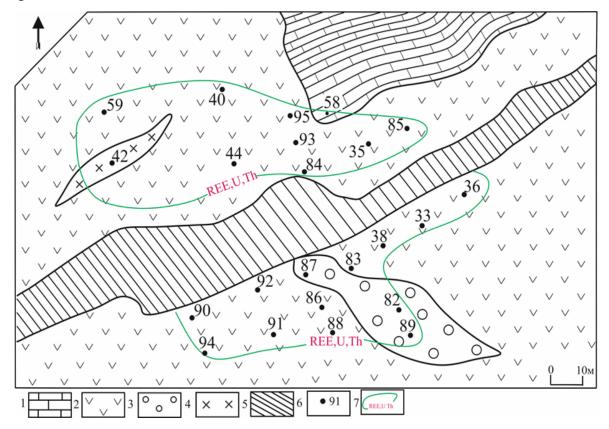
Таблица 2 – Рудные и нерудные минералы из бирюзовых жил

Минерал	Кристаллохимическая формула	Класс
Магнетит с Cu и Mn	Fe ₃ O ₄	Оксид
Пирит с Co и As	FeS ₂	Сульфид
Гиббсит Си, Мп	Al (OH) ₃	Гидрооксид
Малахит	Cu ₂ [CO ₃] (OH) ₂	Карбонат
Халькопирит	CuFeS ₂	Сульфид
Фаустит	$ZnAl_6(PO_4)_8 • 4H_2O$	Фосфат
Климанит	$ZnAl_2(PO_4)_2(OH)_2 \cdot 3H_2O$	Фосфат
Самплеит	NaCaCu ₅ (PO ₄) ₄ Cl • 5H ₂ O	Фосфат
Халькосидерит	$CuFe_6(PO_4)_4(OH)_2 • 4H_2O$	Фосфат
Аргентоярозит	AgFe ₃ (SO ₄) ₂ OH	Сульфат
Ганнингит	Zn (SO ₄) •H ₂ O	Сульфат
Ванадинит	Pb (VO ₄) ₃ Cl	Хлориды

По штуфным пробам, отобранным в лежачем и висячем боках Бирюзового разлома (Рис. 16), установлены очень высокие содержания редкоземельных и радиоактивных элементов (Таблица 3 и Таблица 4). Рассчитанные нами кларки концентрации варьируют: Y 6-8, Ce 3-4, La 8-10, Pr 30-100, Nd 16-17, Th 1-6, U 6-140. Редкоземельная аномалия, вероятно, обусловлена минерализацией обнаруженной нами в жиле гиббсита с малахитом распространённой на всю площадь.

Таблица 3 Редкоземельные металлы (г/т)

№ п/п	Y	Ce	La	Pr	Nd	Сумма
33	29	150	-	-	289	468
35	25	ı	-	-	ı	25
38	5	ı	-	ı	ı	5
40	42	ı	59	150	115	366
42	20	ı	-	-	ı	20
44	26	ı	-	ı	1	26
58	1	177	-	ı	ı	177
59	14	ı	170	206	378	768
82	-	209	157	201	395	962
84	45	ı	-	-	ı	45
85	47	219	130	244	423	1093
86	8	205	-	221	438	872
87	12	155	-	ı	1	167
88	25	190	144	ı	316	675
89	31	169	103	ı	286	589
90	5	198	-	204	375	782
91	45	170	139	-		374
92	15	156	-	-	-	171
93	45	-	_	919	277	1238
94	177	315	139	244	422	297
95	255	-	152	-	-	407


Таблица 4 – Радиоактивные металлы (г/т)

№ п/п	Th	U	Сумма
33	29	9	38
35	14	6	20
38	5	7	13
40	9	6	15
42	44	12	56
44	14	5	19
58	9	6	15
59	34	10	44
82	12	4	16
83	42	13	55
84	16	-	16
85	39	16	55
86	35	19	54
87	47	16	63
88	40	11	51
89	29	6	35
91	-	3	3
92	-	4	4
93	16	7	23
94	35	10	45
95		420	420

После нанесения высоких содержаний элементов на план месторождения определились контуры двух геохимических аномалий (Рис. 16). Площадь северной составила 250х25-60, а южной – 250х60-90 метров. РФА штуфных проб показал очень высокие значения содержаний As, Sb, Zn, Bi, W, Mo, Cu, Cd, Se, Ba, Ag, Au с кларками концентрации в десятки раз выше фоновых значений (Таблица 5). Нами была опробована практически вся площадь месторождения Бирюзакан и его северный фланг, выше Бирюзового разлома (Рис. 17). Общая площадь аномалии составила 0,25 км².

Внутри вулканитов, без видимой связи с жильными образованиями отмечается тонко рассеянная вкрапленность рудных минералов и их скопления вокруг тёмноцветных фенокристаллов.

Выявленная нами в составе кварцевых жил с бирюзой многочисленная группа рудных минералов, содержащих химические элементы, характерных для месторождений района, подчеркивает геохимическую рудных парагенетическую связь бирюзы с рудными месторождениями Карамазара. Кристаллизация бирюзы (минерал Cu), фаустита (минерал Zn) и других сопутствующих рудных минералов (халькопирит 2-й генерации гидроксилбастнезит-Nd и др.) связана с процессом регионального рудогенеза, в котором они составляют самое позднее звено эндогенного цикла.

Рис. 16. Геохимические аномалии редкоземельных и радиоактивных элементов Бирюзакана (составлена на основе геологической карты м-ба 1:1000, Нитман и др. 1985).

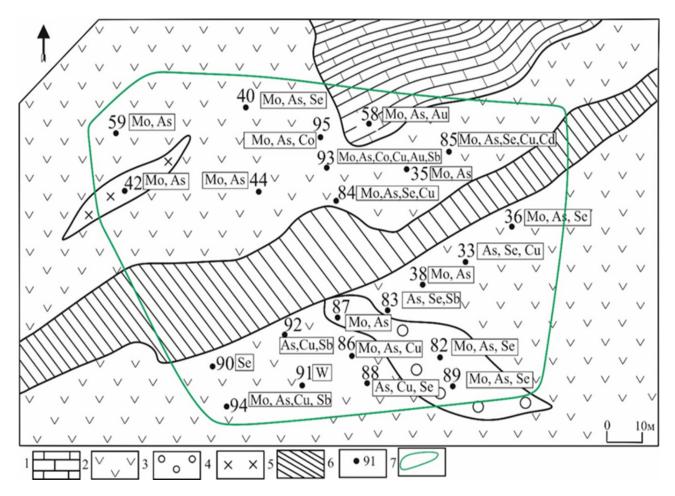

¹ – мраморизованные известняки и доломиты (D_2 - C_1); 2 – андезитовые порфириты акчинской свиты (C_2); 3 – вторичные кварциты; 4 – монцограниты; 5 – Бирюзовый разлом; 6 – точки отбора проб; 7 – контур геохимической аномалии

Таблица 5 — Содержания рудных элементов в вулканитах месторождения Бирюзакан (Γ / τ)

N_0N_0	Se	W	Mo	Cd	Bi	Cu	As	Sb	Ba	Zn	Ag	Au
33	15	-	-	-	-	-	-	-	-	-	-	-
35	-	-	5	-	-	-	25	-	3365	-	-	-
36	8	-	8	ı	ı	ı	15	ı	1444	-	-	-
38	-	-	9	ı	ı	-	49	ı	187	-	-	-
42	-	-	5	ı	ı	-	66	ı	1919	-	-	-
44	-	-	11	-	-	-	19	-	1771	-	-	-
58	-	-	9	ı	ı	ı	18	1	1259	-	ı	7
59	-	-	5	ı	ı	-	16	ı	1292	-	-	-
82	3	18	16	ı	ı	ı	11	1	242	-	11	ı
83	3	-	ı	ı	ı	ı	29	43	2142	-	ı	ı
84	5	-	50	ı	ı	401	29	1	982	-	ı	ı
85	6	20	15	18	ı	406	6	1	1721	-	-	-
86	5	-	56	ı	31	3894	111	1	288	-	11	ı
87	-	-	13	ı	ı	ı	13	1	575	-	6	ı
88	7	-	-	ı	ı	491	13	ı	1640	-	-	-
89	4	29	33	ı	ı	-	10	ı	1281	-	9	-
90	1	-	-	-	-	-	-	-	-	-	-	-
91	-	14	-	ı	ı	-	-	-	ı	-	-	-
92	-	-	-	-	-	428	10	40	-	-	12	-
93	5	62	9	24	52	3725	13	44	1164	198	-	8
94			6			42992	79	34	1975	395		
95			50	33	22		34			1682		

Примечание. Пробы анализировались в Инжиниринговом центре МГРИ

Полученный минеральный состав сопровождающих бирюзу жильных и рудных минералов, содержащих Fe, Mn, Cu, Zn, Co, As, V, Ag, REE, F, а также выявленная геохимическая аномалия представленная REE, Th, U, As, Sb, Zn, Bi, W, Mo, Cu, Cd, Se, Ba, Ag, Au с кларками концентрации в десятки раз выше фоновых значений дает основание обозначить Бирюзакан в качестве перспективного объекта для постановки поисково-оценочных работ на рудную минерализацию. Также это позволит расширить генетические представления о развитии самоцвета на флангах и более глубоких горизонтах месторождения. Автор полагает, что существуют перспективы обнаружения бирюзовой минерализации на смежных рудных месторождениях.

Рис. 17. Результаты геохимического опробования месторождения Бирюзакан, Условные значения на **Рис. 16**

Внутри вулканитов, без видимой связи с жильными образованиями отмечается тонко рассеянная вкрапленность рудных минералов (Рис. 18 а) и их скопления вокруг тёмноцветных фенокристаллов (Рис. 18 б).

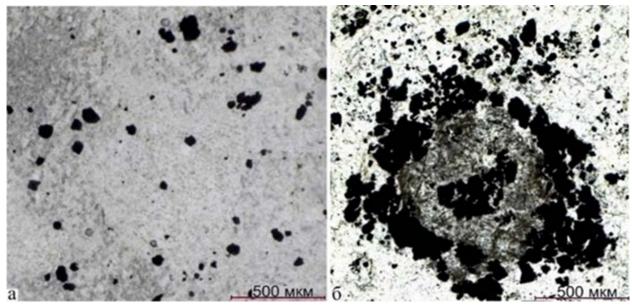


Рис. 18. Характер распределения рудных минералов по массе вулканитов а – редкие, мелкие рудные минералы по осветлённой породе; б – скопление рудных минералов вокруг тёмного выделения, возможно, вулканического стекла.

Парагенетические связи территории бирюзовой минерализации с рудными объектами Карамазара и включение кристаллизации бирюзы в процесс рудогенеза может быть аргументирована металлогенограммой (Рис. 19). Её анализ позволяет проследить участие бирюзовой минерализации в общем процессе образования рудных месторождений.

Свита	Мощность в км	Структурно - вещественные комплексы	1
Не выделена K_2 -Р	0,5		2
Кызылнуринская Т ₁ kz	0,8		3
Равашская Р ₂ rv	0,8		4
Шурабсайская Р ₁ sch	2		5
Оясайская С ₃ os	3,4		6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Надакская С ₂₋₃ nd	2,5		9 0000
Акчинская С₂ak	2,4		11 = = = = = = = = = = = = = = = = = =
Минбулакская C ₂ mb	0,4	₹/३-0 ₹/,♦,	12
Не выделена $D_2\text{-}C_1$	1,7		13
Кугалинская ${ m D}_{{ m 1-2}}$	1,5		15
Урубулакская и Кайракская О-S	4		

Рис. 19. Металлогенограмма Карамазара и положение в ней бирюзы. Составлена по [Геология и...,1972;Геология СССР...,1959; Рудные ...,1972]: 1-4 – интрузии: 1 – шайданский, гранитоидный (Т₁) 2 – чорухдайронский, сиенитовый (Р); 3 – карамазарский, гранодиоритовый (С₂); 4 – бургундинский, микродиоритовый (S₂); 5-7 – вулканиты: 5 – андезиты, базальты, туфы; 6 – липариты, дациты, туфы; 7 – липариты, трахилипариты, туфы; 8-13 – осадочные породы: 8 – базальные конгломераты; 9 – конгломераты; 10 – песчаники; 11 – алевролиты; 12 – известняки; 13 – доломиты; 14-15 – контакты: 14 – несогласные; 15 – согласные; 16-18 – месторождения: 16 – а) бирюзы, б) Fe; 17 – а) Au, б)Ag;18 – а) Pb-Zn, б) Cu-Bi

ЗАКЛЮЧЕНИЕ

Колломорфная текстура бирюзы и гиббсита, с хорошо выраженными сферолитами является признаком кристаллизации самоцвета из коллоидных низкотемпературных растворов, в которые перешли истинные растворы после кристаллизации кристаллов кварца 4-й генерации. Вероятно, массивные агрегаты бирюзы являются более высокотемпературными, чем колломорфные. Они также являются более качественным кристаллосырьём.

Возможное обнаружение новых проявлений бирюзы можно связывать с восточными флангами и более глубокими горизонтами месторождения.

Установленные нами минералогические признаки позволяют выделить некоторые фациальные и формационные особенности месторождения. Например, крандаллит и бирюза, содержащие, соответственно, до 12.5 и до 0.5 % SO₃ позволяют наметить проявление сольфатарной стадии (фации) развития вулканического процесса в Карамазаре. Гиббсит является признаком алунитовой формации метасоматитов.

На месторождении нами была установлена группа новых для него минералов: фаустит $ZnAl_6(PO_4)_8$ • $4H_2O$, аргентоярозит $AgFe_3(SO_4)_2OH$, ганнингит $Zn(SO_4)$ • H_2O , ванадинит $Pb(VO_4)_3Cl$ и климанит $ZnAl_2(PO_4)_2(OH)_2$ • $3H_2O$, халькосидерит $CuFe_6(PO_4)_4(OH)_2$ • $4H_2O$, гиббсит $Al(OH)_3$, также подтверждающая фациальные и формационные особенности месторождения.

Карамазара сформирована Бирюза на самой последней низкотемпературной стадии эндогенного цикла развития. Мезозойский чехол осадочных пород, перекрывающий бирюзоносные породы Бирюзакана, в котором отсутствуют гидротермальные жилы, позволяет определить время образования бирюзы, домезозойское. Нами была установлена как парагенетическая связь месторождения бирюзы Бирюзакан с рудными месторождениями региона позднепалеозойского возраста.

Широкий спектр редкоземельных, радиоактивных, редких, цветных и благородных элементов, установленных на площади месторождения создают перспективы для выявления их промышленных концентраций.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ

В рецензируемых изданиях, рекомендуемых ВАК Минобрнауки РФ:

- 1. Литвиненко А.К., **Восихов Ш.Т**. Месторождения и проявления бирюзы и варисцита в Республике Таджикистан // Известия высших учебных заведений. Геология и разведка. 2024. № 3. С.19-25.
- 2. Литвиненко А.К., **Восихов Ш.Т.,** Рассомахин М.А., Якушина О.А. О парагенетической связи месторождения Бирюзакан с рудными месторождениями Карамазара //Горный журнал. 2025. №2. С. 15-20.
- 3. **Восихов Ш.Т.,** Литвиненко А.К., Рассомахин М.А. Первая находка гиббсита на месторождении бирюзы Бирюзакан, Северный Таджикистан// Известия высших учебных заведений. Геология и разведка. 2025. №1. С.49-55.

В других изданиях и материалах различных конференций

- 4. Литвиненко А.К., **Восихов Ш.Т.** Проблема источники вещества для бирюзы месторождения Бирюзакан, Карамазар, Северный Таджикистан // XVI Меж.-го научно-прак. конф. «Новые идеи в науках о Земле».-Москва. МГРИ-РГГУ. 2023.-с.53-55.
- 5. **Восихов Ш.Т.,** Литвиненко А.К., Особенности размещения месторождений бирюзы в Таджикистане //ХІ Меж.-го научная конф. молодых ученых «Молодые-Наукам о Земле».-Москва. МГРИ-РГГУ. 2024.-с.340-343.
- 6. **Восихов Ш.Т.,** Литвиненко А.К. Геологические особенности и качественные кондиции бирюзы из месторождения Бирюзакан, Карамазар (Северный Таджикистан //ІІІ ежегодной Межд.-го научно-практической конф. «Развитие национальной промышленности и геологии Таджикистана за годы независимости страны».-Бустон. ГМИТ. 2024.-с.21-22.
- 7. Литвиненко А.К., **Восихов Ш.Т.** Структурно-текстурные особенности бирюзы с месторождения Бирюзакан, Северный Таджикистан // XVII Международная научно-практическая конференция «Новые идеи в науках о Земле» МГРИ-РГГУ. 2025 (в печати)
- 8. **Восихов Ш.Т.,** Литвиненко А.К. О перспективах месторождения бирюзы Бирюзакан, Северный Таджикистан на редкоземельные и радиоактивные металлы // XIV Межд.-го научно-практическая конф. «Геология, прогноз, поиски и оценка месторождений алмазов, благородных и цветных металлов».-Москва. ЦНИГРИ.2025. с.81-83.
- 9. **Восихов Ш.Т.,** Литвиненко А.К. Геохимическая аномалия рудных элементов на площади месторождения бирюзы Бирюзакан, Северный Таджикистан // XVII Международная научно-практическая конференция «Новые идеи в науках о Земле» Москва. МГРИ-РГГУ. 2025. с.106-110.